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SUMMARY 
A consistent three-level time-split group finite-element method, suitable for the computation of viscous 
compressible flows in irregular geometric domains, is described. Exploitation of the group” formulation 
permits an accurate and economical algorithm to be developed in a generalized-co-ordinate (5, v )  space. 
A variable sweep cycle is used to accelerate convergence to the steady state. The method is demonstrated 
by computing laminar and turbulent flow past a trailing edge. The method uses an algebraic eddy viscosity 
model to represent turbulence and produces results in close agreement with the experiments and computa- 
tions of Viswanath et a/.* 
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1. INTRODUCTION 

Transonic flow about the trailing edge of an aerofoil offers considerable challenge to the computa- 
tional fluid dynamicist. The flow is complicated because of the dominance of the viscous-inviscid 
interaction, large adverse streamwise pressure gradients together with large pressure gradients 
normal to the aerofoil surface. Further, one has the interaction of different shear layers in the 
near wake. These effects influence, significantly, the design of an aerofoil and assume particular 
importance in the case of supercritical aerofoils. 

Any attempt to compute such a flow is made more complicated by the geometry of the trailing 
edge. One would like to have a rectangular and uniform mesh in the computational domain. 
Though certain geometries, such as that of a flat plate or a backward-facing step, allow the 
prescription of a rectangular mesh there are many other geometries, such as a complete aerofoil 
or even just the trailing edge of an aerofoil, which do not allow the prescription of a rectangular 
mesh. Further, in many of the computations of physical interest there are regions with sharp 
gradients of the flow variables, for example the near-wake, where one has to prescribe a fine 
mesh to achieve a good spatial resolution. In such a case it may be prohibitively expensive to 
use a fine mesh throughout the computational domain. The mesh should be fine in regions where 
sharp gradients exist and coarse elsewhere. 

Despite these complexities, there have been some attempts to compute trailing-edge flows. 
Recently, Horstman1V2 has computed the turbulent flow about an asymmetric trailing-edge and 
has provided a detailed comparison of the computed results with those of experiments. He has 
solved the unsteady, Reynolds-averaged Navier-Stokes equations and has used various models 
of turbulence. The k-8 and k - o 2  models have been shown to provide results in good agreement 
with experiments. The recent MacCormack scheme3 has been used to solve the equations. 
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Diewert4 has obtained the flow around a complete aerofoil using MacCormack’s explicit-implicit- 
characteristics method5 and different models of turbulence. Baker et aL6 have considered the 
complete aerofoil geometry to compute incompressible flow past the trailing edge. They employ 
the steady-state equations and the k--E model of turbulence. The equations have been solved by 
using a finite-element formulation. Rhie and Chow7 employ a finite-volume method with the 
k--E turbulence model and find that the accuracy of the results is highly dependent on the degree 
of resolution of the strong trailing-edge gradients. 

There have also been a few experimental studies of the flow over the trailing edge of an aerofoil, 
notably those of Viswanath et d8, Cleary et aL9 and Viswanath and Brown.” 

In this paper we present a time-split group  finite-element method in generalized co-ordinates to 
compute flows where the physical domain would require a distorted mesh, e.g. a trailing-edge 
flow. For the application of the conventional finite-element method on a distorted mesh, it has 
been usual to employ an isoparametric formulation. Using this formulation, the distorted mesh 
in the physical domain is mapped into a uniform mesh in the transform plane, after discretization. 

But it is well known that the isoparametric formulation, though conceptually convenient, can 
lead to inaccuracies if the elements are too distorted.“ Here we follow an alternative path by 
expressing the equations in generalized co-ordinates (4, q), prior to discretization. The Galerkin 
group  finite-element method” with linear Lagrange elements is then applied in the ( 5 ,  q )  plane. 
The set of resulting ordinary differential equations is converted into an efficient computational 
algorithm by the application of a consistent time-split form~la t ion’~  in the (4 ,  q)  plane. The nodal 
transformation parameters, i.e. the Jacobians, carry all the information about the physical domain. 
The resulting formulation is both more accurate and more economical than the isoparametric 
formulation. 

The deliberate use of the group finite-element formulation” is another feature of the present 
work. Such a formulation avoids the computationally inefficient treatment of the convective terms 
by the conventional finite-element method. An operation count estimate” shows that in the 
present case, which features cubic non-linearities, the group formulation is approximately 
seventeen times more economical than the conventional finite-element method. This large gain 
in economy is expected to be accompanied by a small gain in accuracy, based on numerical 
experiments with the two-dimensional Burgers’ e q ~ a t i o n . ’ ~  

The use of the group formulation with Lagrange elements permits directional mass and difference 
operators to be isolated’ and, in turn, facilitates the construction of the consistent time-split 
formulation. Although in the present investigation a pseudo-transient technique i s  used to obtain 
the steady-state solution, the consistent time-split formulation is also suitable for problems where 
the transient solution is of direct interest. 

The directional mass operators are smoothing operators and are the source of the increased 
accuracy associated with the finite-element method. The present finite-element formulation 
applied to the Euler equations produces a fourth-order scheme on a uniform mesh; whereas the 
equivalent finite-difference scheme, i.e. with lumped mass operators’ would be only second-order 
accurate. The present formulation permits the mass operators to be included with a relatively 
small operational overhead. 

Further, we replace the two-level (in time) time-split schemet6 by a three-level scheme which is 
more robust and which converges to the steady state more quickly.’ The resulting time-split 
finite-element method will compute efficiently laminar or turbulent flow in an irregular domain 
due to three specific features: 

(i) the group finite-element formulation1’ 
(ii) consistent three-level time-split algorithm’ 

(iii) the implementation of the Galerkin finite element method in the transform (<, q)  plane. 
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The scheme to be presented is a development of the AD1 finite-element r n e t h ~ d ' ~ . ' ~  which was 
used, together with an eddy viscosity model for turbulence, to compute flows past a. flat plate 
and a backward-facing step. Results in good agreement with other computational and experi- 
mental results were obtained. 

Here, we apply the generalized-co-ordinate time-split finite-element scheme to compute laminar 
and turbulent flows past a trailing edge. Trailing-edge flow is a member of a class of problems 
which requires a considerable number of iterations, and hence substantial execution time, to 
converge. In this paper, we describe a 'variable sweep cycle' which gives a considerable reduction 
in execution time. 

The rest of this paper is as follows. Section 2 introduces the governing equations and the eddy 
viscosity turbulence model to be employed. The three-level time-split algorithm is developed in 
Section 3. The application of the method to the trailing-edge flows is discussed in Section 4. We 
study in particular velocity profiles, displacement thickness and surface pressure distributions. 
Section 4 also includes a discussion of the 'variable sweep cycle' and results obtained with its 
application. 

2. GOVERNING EQUATIONS 

The flow is governed by the two-dimensional, compressible, Navier-Stokes equations. In the 
Cartesian co-ordinates these are 

(1) 
aq aF aG a2R a2s a2T 
at dx ay a X 2  axay ay2 

+ - 9  
-+-+-=.-+- 

where 

s =  0,-v -v , { x ]  
T = ( 6 3 ~  PU, ~ P V } ,  

Q =4Eu - 2  
x 3 x 3EVy9 

g = 5 t E v  - 2  
y 3 y 3'%, 

zxy = E(Uy + v3 ,  

p = density, u, v = velocity components in x and y directions, p = pressure, ex, cy, zXy = Reynolds 
stresses, ,u = molecular viscosity, E = eddy viscosity (see Section 2.2 for details), I9;p 
(non-dimensional 6 = 10/Re) are the dissipative terms included in the continuity equation to 
stabilize the numerical procedure. 

It is assumed that the temperature changes in the solution domain are small. Such an assump- 
tion is justified for the flows of interest, which are transonic. As a consequence, the molecular 
viscosity, p, is assumed to be constant everywhere. Further, the following relationship between 
pressure and velocity is assumed:' 
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Because of equation ( 3 )  the energy equation (not shown above) need not be solved. 
The equations are non-dimensionalized with respect to a characteristic length L, free stream 

velocity u ,  and free stream density pm.  Then 1.1 is replaced in equation (2) by 1/Re where Re is 

the Reynolds number ( ~ The non-dimensional form of the pressure equation (i.e. 

equation ( 3 ) )  is 

where M ,  is the free-stream Mach number. 

2.1. Transformation of the governing equations 

In the present study a distorted mesh is required adjacent to the trailing edge. In a finite-element 
framework it is usual to use an isoparametric formulation18 to map the distorted mesh in the 
physical plane into a uniform mesh in the transform plane. However this transformation takes 
place after the spatial discretization (by applying the finite element method) in the physical plane. 
The result is a computationally expensive evaluation of integral expressions for the algebraic 
coefficients. This integration is usually carried out numerically using Gauss quadrature in the 
transform plane. Although this is more economical than carrying out the integration in the 
physical plane it is still an expensive process unless only first derivatives appear and linearly. 
In this case, the Jacobian associated with the first derivative cancels with the Jacobian associated 
with the integration and the numerical integration can be carried out once and for a11.15 

For the conventional finite-element treatment of the convective terms the Gauss quadrature 
must be repeated at each iteration or at each time step unless the algebraic coefficients are 
evaluated once and for all and stored. In addition it is known" that if the mesh in the physical 
plane is very distorted the solution accuracy deteriorates. 

In the present study the distorted mesh in the physical plane is transformed into a rectangular 
mesh in the transform plane before the group finite-element formulation is introduced. The 
governing equations include transformation parameters but can be written in a form that is not 
significantly more complicated (see equation (7)) than the form of the equations in the physic21 
plane. By applying the group finite-element formulation12 in the transform ( 4 ,  y) plane the resulting 
algorithm is both more accurate and more economical than applying the conventional finite- 
element method with an isoparametric mapping. 

The general transformation is introduced via 

Under this transformation, 

ux = Lug + V,UV, u y  = 5 p g  + ryuV, etc. (6) 

(7) 

Upon transforming equation (1) to the (4 ,  V )  plane, using equation (5) one gets 

@ + F% + G,* - RFc - S& - T,*, = 0, 

where 
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fn the above equations J is the Jacobiaii of the transforma~~on and U ,  and V, are the 
contravariant velocities along the 5 and q directions" and are given by 

u, = 5,u + f y v ,  v, = f l , t l+  y p .  (14) 

2.2. Turbulence model 

A two-layer eddy viscosity model based on that of Cebeci and Smith2' is used to represent the 
effects of turbulence. The model has been described in Reference 17. 

3. TIME-SPLIT GROUP F r N ~ ~ E - E ~ E M ~ N T  F O ~ M U L A T ~ O ~  

The basic idea behind the group 
for the groups of terms, e.g. F*, G*, that appear in equation (7). Thus 

is that separate trial solutions are introduced 

F* = CFJ*(tfcp,(t> ql, (15) 
J 
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where F?(t) are the nodal values of F* and 4J(t,q) are the known trial functions. A conven- 
tional finite-element treatment would require separate trial solutions for each dependent variable 
in the groups like F*. In the present study we have used linear Lagrange interpolating functions 
for (pJ(5, q). Although higher-order interpolating functions could be used, the increased 
connectivity' implies a considerable loss of economy, particularly in three dimensions. In 
addition, the interpolating function must be capable of being split13 in order to develop the 
time-split scheme described below. This requirement rules out the use of serendipity trial functions. 

Application of a conventional Galerkin finite-element method to equation (7) with trial 
solutions like (15) produces a system of ordinary differential equations that can be written 

M, @ M,q: + M, @ L,F* + M, @ L,G* - M, @ L,,R* - L, @ L,S* - M, @ L,,T* = 0, (16) 

where @ denotes the tensor product. 
In equation (16) the components of F*, G* etc. are given by equations (9)-(13), M, and M, 

are directional mass operators and L,,L,,, L, and L,, are directional dgerence operators. The 
various operators are defined as follows: 

These have been defined with respect to Figure 1 for a non-uniform grid in the ( 5 , ~ )  plane. 
The algebraic expressions resulting from the Galerkin finite-element implementation have been 

divided by A t  Aq to give equation (17). The similarity between operators L,, L,, and centred finite- 
difference operators is apparent. The mass operators, M,, M, have the effect of distributing the 
influence of the difference operators over the neighbouring nodes, i.e. a smoothing effect. Thus, with 
reference to Figure 1 the expression M, @ L,F* is 

r,[{FI*,l - Fi*_,}/2651 +2[{Fi*,, -Fi*_,}/WI +&[{Pi*,, -F~-,}/2AtI. ( l + r )  (18) 
j j j - 1  j - 1  6 j + l  j + l  3 

The role of the mass operators is considered at greater length e1~ewhere.l~ 
We now develop a time-split algorithm to solve the system ofequations (16). Introducing a general 

three-level evaluation of the time derivative, equation (16) is written 

+ (1 -a)- Aq*"] = p RHS"" + (1 - p) RHS", 
M,@M,[ At 

where 
RHS = M, @ L,,R* + L, @ L,S* + M, @ L,,T* - M, @ L,F* - Me @ L,G*. (20) 

In equation (19) a, p are free parameters. The choice a = 1 and p = 0.5 gives the Crank-Nicolson 
scheme and cc = 1-5 and p = 1.0 gives a three-level fully implicit scheme which is used in the present 
work. Both the schemes are second-order accurate in time but the three-level fully implicit (3LFI) 
scheme is more robust and gives faster convergence as the steady-state solution is approached.' 

The equations (19) are non-linear for Aq*' = {y ,  - - A;", __ \. We introduce a Taylor expansion 

of the equations about the nth level to linearize them. Thusz 
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where 

1 + 1  
J+ 1 

1 

I + 1  
J 

1 + 1  
J- 1 

Equation (19) is now written as 

= At(RHS)" + /?AtLC @ L , F A q * " +  as* - (1 - a)M, @ M,Aq*". 

as* The term /?AtLC 0 L,,q*Aq*"+l is due to the cross-derivatives and it may be noted that it does 

not have any contribution from the implicit grid lines (i, j). Hence the term is calculated explicitly, i.e. 
AL\~*~+  is replaced by Aq*n. 

Addition of the following term of O(At2): 

c1 

to the left-hand side of(23)enables the splitting to be carried out. The split algorithm is implemented 
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as 

where 
as* 

(RHS)A = (RHSY + PLe 0 L,F*Aq*". 
4 

This algorithm is conceptually similar to the first step of a tensor-product approximation to the 
Newton-Raphson method developed by Baker.21 

In equations (24) and (25) the contribution to R* etc., arising from the transformation parameters 
c,, qx etc., must be evaluated. This is achieved most easily by noting the relationships 

where J is the transformation Jacobian and is given by 
<, = Jy,, yx = - Jy,, 4, = - Jx, and yy = J X ~ ,  (27) 

(28) J = l/(X<Y, - X,Y<). 

The following algebraic expressions have been used to evaluate xg etc.: 

and 

Equivalent expressions can be written down for y, etc. in terms of the nodal values, yi. 
.i 

Equations (29) can be interpreted as having been obtained by using a lumped Galerkin finite- 
element formulation with linear Lagrange elements. The similarity with the difference operators in 
equations (17) is evident. 

Equations (24) and (25) are a decoupled implicit local system of equations associated with each 
grid line in the 4 and q direction. The block tridiagonal system is solved in O ( N )  operations and 
there is no need for a global factorization at  each time-step. 

It may also be noted that (RHS)A in (24) approaches zero as the steady state is approached. 
Hence (RHS)A provides a measure of the 'closeness' of the solution to the steady state. When 
the steady state is reached Aq* = 0, thus indicating that choices for the left-hand side of equations 
(24) and (25), other than the present one, are possible without altering the steady-state so1ution.l6 

4. RESULTS AND DISCUSSION 

The time-split finite-element method, described in the previous sections, is used to compute 
compressible flow past a symmetric trailing edge. Both laminar and turbulent cases are considered. 
Table I gives the details of the two cases on which Figures 2(a) and 2(b) are based. 
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Table I 

Laminar Turbulent 

Wedge angle 12.5" 12.5" 
Free stream Mach number 0.4 0.4 
Reynolds number 100 106 

Figure 2(a) gives the geometry of the trailing edge. The wedge angle (125") is the same as used 
in the studies of Viswanath et aL8 

The region AEFG in the physical domain is transformed to a rectangle A'E'FG in the computa- 
tional domain (Figure 2(b)). The wedge BCD is transformed to a straight line DC'. 

The Blasius profile and the power-law velocity profile were used as the starting data for the 
laminar and turbulent cases, respectively. The time-steps employed were 0.01 and 0405 (details 
regarding the mesh distribution are given later). Typically it required about 1000 time-steps for 
the laminar flow and 2000 for the turbulent flow before the results converged. Convergence was 
assumed when the r.m.s. value of the (RHS)A (see equation (24)) was below The execution 
time for 1000 time-steps (for the mesh employed) for laminar flow was about 15 hrs on a Perkin- 
Elmer 3220 system. However, this execution time could be reduced with further code development. 

E 

A 
Figure 2(a). Physical domain 

E' F' 

G' 
Figure 2(b). Computational domain 
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- 

4.1. Boundary conditions 

The following boundary conditions are applied at the various boundaries and solid walls, 
shown in Figure 2(b). 

On solid walls C D  the two components of velocity u and uare set to zero. On the inflow boundary 
A'E the velocity components u and u are prescribed from the Blasius profile for the laminar 
case and from a power-law profile for the turbulent case. Pressure is calculated using the one- 
dimensional characteristic relation 

P' 

0' 

a p  au 
ax ax pc- = 0, _- 

where c is the speed of sound. On the free-stream boundaries E F  and A ' G  the values of u and 
u are prescribed at their non-dimensional free-stream values of 1.0 and 0.0, respectively. Pressure 
is calculated by a relation similar to (30), 

ap au 
- - pc- = 0. 
aY aY 

On the outflow boundary F G  the following conditions on u and v are imposed: 

a Z U  a 2 0  

ax2 ax2 
0. -=-= 

Pressure is calculated from the non-reflecting condition 

a p  au 
- - pc- + a(p - p,) = 0. 
at ax (33) 

The non-reflecting condition absorbs the spurious transient signals reaching the boundary and 
does not allow their reflection into the computational domain. A detailed discussion of this 
boundary condition is provided in Reference 22. The term a ( p - p , )  in equation (33) is used 
only when the steady-state solution is sought. It is found that this extra term can accelerate 
convergence to the steady state.23 

4.2. Laminar Flow 

Computations were carried out for a unit Reynolds number of 100 and a free stream Mach 

P' 

B, D' 

0' 

M' N' 

I I 
i I 

I I +  
M' N' 

Figure 3. Computational mesh 



COMPRESSIBLE VISCOUS FLOW 473 

0 

0 
‘D- 

0 t- 

0 

0 0  

number of 0.4. The computational domain A ’ E F G  (Figure 2(b)) was divided into 34 x 42 ele- 
ments. The mesh in the streamwise direction, i.e. the x-direction, was uniform in the region 
M’M’-N’N close to C’ (see Figure 3), the mesh width being 10 per cent of the boundary layer 
thickness at the inflow boundary DE (Figure 2(a)). In regions upstream of M’M’ and downstream 
of N‘N’ the mesh was stretched geometrically by a factor of 1.3. In the y-direction the mesh was 
uniform in the region PT-Q’Q’, outside of which the mesh was stretched geometrically again 
by a factor of 2.3. The lines PP’  and Q‘Q were placed one inlet boundary layer thickness away 
from DC‘. 

The computed u-velocity distribution for the symmetric trailing-edge flow is given in Figure 4 
for different x-stations. The x-co-ordinate is normalized with respect to distance, h (see Figure 
2(a)), and is measured from C. In regions upstream of C the profile is close to that a boundary 
layer and it undergoes modification downstream of C. In the near wake considerable changes 
take place close to C only, whereas in the far wake changes are observed all along the profile. 
The profile at the furthest downstream station indicates that recovery is almost complete. 

Figure 5 shows the distribution of the displacement thickness. In regions upstream of the shoul- 
der, the displacement thickness development is similar to that of a flat plate. There is a substantial 
increase in the displacement thickness in this region due to the growth of the boundary layer. 
The effect of the trailing-edge geometry is felt from slightly upstream of the shoulder and the 
displacement thickness increases at a different rate and reaches a peak value at the trailing edge 
C. In regions downstream of C the displacement thickness decreases and approaches a value 
higher than that for a flat plate in the far-wake regions. 

The surface pressure distribution for the laminar flow over the symmetric trailing edge is given 
in Figure 6. It is observed that the distribution is close to that for a flat plate except near the 
trailing edge. The pressure distribution seems to be diffused. The minimum pressure expected 
at the shoulder occurs downstream of it near the trailing edge. Further an almost discontinuous 
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Figure 4. u-velocity profiles for laminar flow: Re = 100, M ,  = 0.4 
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Figure 5. Displacement thickness distribution for laminar flow: Re = 100, M ,  = 0.4. (Displacement thickness is expressed 
as a ratio of that at the inlet boundary) 
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Figure 6. Surface pressure distribution for laminar flow: Re = 100, M ,  = 0.4. (PT is the total pressure) 
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jump in pressure is observed far upstream. This jump is caused by the coarseness of the mesh 
in this region. Computations with a finer mesh indicate that such a jump does not occur. In the 
absence of any experimental data to compare with, the laminar results are considered statisfactory, 
i.e. they appear qualitatively plausible. 

4.3. Turbulent flow 

The computations were carried out for a unit Reynolds number of lo6 and a free-stream Mach 
number of 0.4. The computational domain (Figure 2(b)) was divided into 34 x 82 elements. The 
number of elements in the y-direction had to be more than that for the laminar case to obtain 
a good resolution of the flow features close to the body. The mesh employed in the x-direction 
was the same as for the laminar case. But in the y-direction a different type of a mesh was employed. 
I t  is well known that in a turbulent flow there is a severe velocity gradient near the wall and a 
fine mesh is required close to the wall to achieve a good resolution of flow features. The mesh 
width adjacent to the solid wall was one per cent of the boundary layer thickness at the inlet. 
This corresponds to y' = 9.0 (y' being the 'law-of-the-wall' co-ordinate). The mesh was stretched 
exponentially from the body surface to the edge of the viscous layer which had 20 elements across 
it. Outside of the viscous layer the mesh was uniform in the y-direction. 

During the course of computations it  was found that even such a fine mesh is inadequate. We 
have, therefore, used the law-of-the-wall approach to determine the velocities at points immedia- 
tely adjacent to the wall. The law-of-the-wall relations have been described elsewhere.' 

In the present computations, the turbulence terms such as (d /dy ) (edu /dy )  were calculated as 
(Z2 /?y2 ) (m)  to be consistent with group formulation. It may be noted that 

The extra terms u ( d 2 ~ / d y 2 )  + (du/dy)(&/dy)  in equation (34) are significant only immediately 
adjacent to the wall and are negligible in regions away from the wall. However, adjacent to the 
wall, the velocity behaviour was imposed by the law-of-the-wall relations so that the extra terms 
have no effect on the solution. 

The mean u-velocity profiles for various x stations are given in Figure 7(a). Also shown are the 
profiles obtained by Viswanath et a1.' (It may be noted that the computed and the experimental 
results in Reference 8 are in good agreement). The x-distances have been normalized with respect 
to the momentum thickness at the inlet conditions to facilitate comparison of the present results 
and those of Viswanath et 01.' Further the y-distances have been normalized with respect to the 
boundary layer thickness at the trailing edge. The present results are seen to be in good agreement 
with those in Reference 8 along the centreline as well as the inner and outer regions of the wake. 
Some discrepancies are noticed mainly in the outer layers. These could be attributed to various 
factors. The Reynolds number considered in the present study is lo6 whereas Viswanath et al. 
consider a Reynolds number of 26.2 x lo6. Further, some inaccuracies in reading of the values 
of the velocities or y-distances from the figures provided in Reference 8 cannot be ruled out. 
Figure 7(b) gives separately the mean u-velocity profiles obtained by the present method for 
various x-stations. Included in Figure 7(b) are the velocity values close to the wall which are 
omitted from Figure 7(a). 

The computed surface pressure distribution around the trailingedge is plotted in Figure 8. Some 
of the representative points obtained by Viswanath et a1.' are indicated for comparison. In order 
to facilitate comparison of the results the pressure at the inlet boundary was imposed at the 
value reported in Reference 8. The agreement again is good except right at the shoulder where 
the nrpcpnt rnmnlltntinn n r d i r t s  R sliohtlv hiohpr nrpcciirp Fiirthor the rpcnxiprv nf nraccInra tn 
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Figure 7(a). Comparison of mean u-velocity profiles for turbulent flow: Re = lo6, M ,  = 0.4. (BLT = boundary layer 
thickness at the trailing edge, MOM = momentum thickness at inlet conditions) 
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Figure 7(b). Mean u-velocity profiles for turbulent flow: Re = lo6, M ,  = 0.4 

the flat plate value as the trailing edge is approached is predicted to take place at a lower rate 
compared to that in Reference 8. 

Figure 9 shows the wall shear stress distribution. Wall shear stress in normalized with respect 
to its value at the inlet conditions. The expression (p + ~ ) ( ( a u / a y )  + (au/ax))  was used to calculate 
the shear stress (and an average value of E at the wall and the first row of points closest to the 
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Figure 8. Surface pressure distribution for turbulent flow: Re = 106,M, = 0.4. (PT is the total pressure) 
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wall was used). Our computations indicate a gradual decay in shear stress starting slightly up- 
stream of the shoulder, and right at the trailing edge there is a small rise as also observed in 
Reference 8. At the shoulder, the studies in Reference 8 indicate a substantial rise in shear stress. 
In our computations such a marked rise was not noticed. Instead the shear stress value rose 
slightly. The levels reached just upstream of the trailing edge are quite comparable. The com- 
parison of shear stress distribution is made with those computed by Viswanath et d.,* as the 
experimental values of wall shear stress are not available. 

The displacement thickness distribution for the trailing-edge flow is given in Figure 10. The dis- 
placement thickness rises gradually after the shoulder and reaches a peak value at the trailing 
edge. Downstream of the trailing edge it approaches a constant value of 1.6 which is higher 
than that at the inlet boundary. 

The results for the turbulent flow are thus seen to be in substantial agreement with those of 
Viswanath et al.' This agreement demonstrates the capability of the generalized-co-ordinate time- 
split finite-element method to predict the behaviour of a trailing-edge flow. Further, the effective- 
ness of the algebraic eddy viscosity model (Section 2.2) to represent the Reynolds shear stress 
when computing a complex turbulent interaction is also brought out. The results presented here, 
when considered along with the results for the flat plate and backward-facing step flows in 
Reference 17, indicate that the algebraic eddy viscosity model can indeed give good results in 
a variety of situations. 

4.4. Acceleration of convergence 

As stated earlier, i t  requires around 1000-2000 time-steps before the results converge when 
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Figure 10. Displacement thickness distribution for turbulent flow: Re = lo6, M, = 0.4. (Displacement thickness is 
expressed as a ratio of that at the inlet boundary) 
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using the method described. To accelerate convergence what is called a ‘variable sweep cycle’ 
was developed. The rationale behind such a technique can be explained as follows. 

In the example considered it is the trailing edge that effectively controls the flow behaviour. The 
disturbances to the flow originate at the trailing edge and are subsequently communicated to 
the other regions of the flow. An inspection of the (RHS)A values (see equation (24)) showed 
that it is a maximum near the trailing edge and decreases in regions towards the free-stream 
and downstream boundaries. This indicates that the region close to the trailing edge has to 
undergo considerable change before a steady state is attained. Comparatively, the regions near 
the boundaries have to undergo minor changes. 

From a computational point of view this implies that the regions close to the trailing edge 
require a larger number of iterative sweeps than the regions away from it. A procedure wherein 
the region close to the body is swept more often than the regions near the free-stream boundary 
suggests itself. A reduction in execution time is expected from such a ‘variable sweep cycle’. 

In order to test the procedure the transform plane A’EFG’ was divided into three parts-an 
inner region P’Q’R’S‘ of height two boundary layer thickness (P’D’ = DS‘ = one boundary layer 
thickness) and two outer regions, EF’Q’P and S’R’G’A adjacent to free-stream boundaries 
(Figure 11). Computations were started with one sweep in the entire domain A’EF’G’. The next 
two iterations were limited to the inner region PQ’RS’. Such a cycle of one sweep in the entire 
region followed by two sweeps in the inner region was continued until (RHS)A reduced to a 
value less than Figure 12 shows the r.m.s. value of (RHS)A plotted against number of time- 
steps. The convergence is as good as and sometimes better than the full-sweep cycle, though it 
is slower in the first 400 cycles. After a few hundred cycles, the convergence rate is better. Also 
shown in Figure 12 is the convergence behaviour when the inner region is swept four times for 
every sweep in the entire domain. The rate of covergence measured in terms of number of time- 
steps is less than that for the two-sweep cycle. However, the execution time is reduced considerably 
in a four-sweep cycle. 

A measure of the saving in execution time obtained by using the ‘variable sweep’ is given by 

where Rs is the ratio of the number of elements in P’Q’R’S’ to that in A’E’F’G’. RN is the additional 
number of sweeps carried out in PQ’R‘S’ for every sweep in A‘E‘FG’. When RN = 2, R ,  = 
the saving in execution time is 1/3 and when R ,  = 4 and R ,  = f the saving is 215. 

Though the ‘variable sweep cycle’ gives a considerable reduction in execution time, its applicabi- 
lity seems to be strongly problem dependent. More work is needed before the general methodology 

Figure 11. Inner and outer regions for the ‘variable sweep cycle’ 
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Figure 12. Convergence of the solution for the ‘variable sweep cycle’ 

can be optimized. The effectiveness of the ‘variable sweep cycle’ suggests that the present solution 
algorithm would be amenable to a modified multigrid technique.24 

5. CONCLUSIONS 

A time-split group finite-element method in generalized co-ordinates for the computation of 
viscous flows has been developed. Based on a related formulation applied to two-dimensional 
Burgers’ equation14 and the stream function and vorticity equationsi3 it is expected that the 
present formulation is more economical than the conventional finite-element method and more 
accurate than an equivalent finite difference method. 

The method is applied to the computation of laminar and turbulent flow past a trailing edge. 
A two-layer algebraic eddy viscosity model for turbulence is employed. Velocity profiles, displace- 
ment thickness distribution for the wake region and the surface pressure distribution appear 
plausible for the laminar flow results. The results obtained for the turbulent flow are seen to be 
in good agreement with those presented by Viswanath et aL8 This agreement also implies the 
validity of an algebraic eddy viscosity model for complicated flows such as the one considered. 

A technique to accelerate convergence, called a ‘variable sweep cycle’, has been described. The 
technique is shown to be effective in reducing the execution time for the present problem. 
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